
Cross-ISA Execution of SIMD Regions for Improved
Performance

Yihan Pang
Virginia Tech

Blacksburg, USA
pyihan1@vt.edu

Robert Lyerly
Virginia Tech

Blacksburg, USA
rlyerly@vt.edu

Binoy Ravindran
Virginia Tech

Blacksburg, USA
binoy@vt.edu

Abstract
We investigate the effectiveness of executing SIMD work-
loads on multiprocessors with heterogeneous Instruction
Set Architecture (ISA) cores. Heterogeneous ISAs offer an
intriguing clock speed/parallelism tradeoff for workloads
with frequent usage of SIMD instructions. We consider dy-
namic migration of SIMD and non-SIMD workloads across
ISA-different cores to exploit this trade-off. We present the
necessary modifications for a general compiler/run-time in-
frastructure to transform the dynamic program state of SIMD
regions at run-time from one ISA format to another for cross-
ISA migration and execution. Additionally, we present a
SIMD-aware scheduling policy that makes cross-ISA migra-
tion decisions that improve system throughput. We proto-
type a heterogeneous-ISA system using an Intel Xeon x86-64
server and a Cavium ThunderX ARMv8 server and evaluate
the effectiveness of our infrastructure and scheduling pol-
icy. Our results reveal that cross-ISA execution migration
within SIMD regions can yield throughput gains up to 36%
compared to traditional homogeneous ISA systems.

CCS Concepts
• Computer systems organization → Single instruction,
multiple data; Heterogeneous (hybrid) systems; • Software
and its engineering → Scheduling;

Keywords
System Software; SIMD; Heterogeneous Architectures; ISA;
Scheduling; System Throughput

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SYSTOR ’19, June 3–5, 2019, Haifa, Israel
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6749-3/19/06. . . $15.00
https://doi.org/10.1145/3319647.3325832

ACM Reference Format:
Yihan Pang, Robert Lyerly, and Binoy Ravindran. 2019. Cross-ISA
Execution of SIMD Regions for Improved Performance. In The 12th
ACM International Systems and Storage Conference (SYSTOR ’19),
June 3–5, 2019, Haifa, Israel. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3319647.3325832

1 Introduction
In recent years, the computer architecture landscape has
seen the rise of systems integrating heterogeneous architec-
tures as a possible solution to deal with the “end of Moore’s
Law” [13, 23, 80, 81, 86, 88]. Chip designers have explored
the pairing of CPU designs that target vastly different use
cases. For example, ARM’s big.LITTLE technology [62] and
its successor, DynamIQ [58], couple cache-coherent “big”
cores (high clock speeds, advanced micro-architecture) for
latency-sensitive workloads with “little” cores (high energy
efficiency) for background and low-priority tasks. In the
server space, Intel Xeon-Xeon Phi systems [24] integrate a
small number of high-performance cores with many low-
power cores to accelerate different workloads. Intel has also
released plans for a heterogeneous x86 architecture with one
big Sunny Cove core and multiple small Atom cores that
uses a new 3D stacking technology [35, 70, 79, 91].
However, these designs do not have heterogeneity at the

ISA level. At best, some cores used in these designs sup-
port extended instruction sets, but at their base, all cores
share the same ISA (e.g., Xeon-Xeon Phi, ARM big.LITTLE).
To date, there has not been any commodity-scale systems
with heterogeneity at the ISA level (a notable exception is
MPSoCs [37]). However, the research community has been
exploring experimental heterogeneous-ISA designs, showing
that they provide better performance and energy efficiency
than single-ISA heterogeneity. Exploration in this design
space includes many forms – shared-memory chip multi-
processors [10, 85, 86], multiprocessors with multiple cache-
coherent domains (and no coherence between domains) [53],
and composite-ISA cores [84] – across many settings, rang-
ing from cluster architectures [68] to mobile settings [50].
Industry trends are also changing. With the advent of

ARM-based high-end servers [20, 82, 83] capable of power-
ing high-performance computing (HPC) applications, third-
party organizations such as data-center providers and cloud

https://doi.org/10.1145/3319647.3325832
https://doi.org/10.1145/3319647.3325832

SYSTOR ’19, June 3–5, 2019, Haifa, Israel Y. Pang et al.

providers are increasingly integrating machines of different
ISA families in their computing installations [3]. Chip ven-
dors are also integrating CPUs of different ISA families in the
same SoC, e.g., the Intel Skylake processor with in-package
FPGA [25, 40] is capable of synthesizing RISC-V and x86 soft
cores, or on the same platform, e.g., smart NICs integrate
ARM [30, 65] or MIPS64 [60].

To understand the performance difference between
heterogeneous-ISA servers, we ran applications from four
popular HPC benchmark suites and calculated the slowdown
of each benchmark when executed on an ARM core com-
pared to an x86 core. We used both servers’ factory-specified
settings. Figure 1 shows the relative performance of single-
threaded applications using one core of the Cavium Thun-
derX machine (96 cores, ARMv8 ISA) [82] in comparison
to one core of the Intel Xeon machine (12-core/24-thread,
x86-64 ISA) [40]. The benchmarks include the NAS Parallel
Benchmark (NPB) suite [9], Phoenix Benchmark suite [77],
Livermore Loops suite [61], and Test Suite for Vectorizing
Compilers (TSVC) [15].

0 500 1000 1500 2000 2500

NPB_EP

PHX_K-means

NPB_FT

NPB_UA

NPB_BT

NPB_LU

NPB_CG

LL_Hydro

TSVC_VPVTS

% Slowdown

Figure 1: % Slowdown of NAS Parallel Benchmarks [9],
Livermoore Loops [61], Phoenix [77], and Test Suite
for Vectorizing Compilers [15] when run on a Cavium
ThunderX core vs. an Intel Xeon Gold 5118 core.

Figure 1 reveals that all benchmarks are slower on ARM
but differ in the degree of slowdown. It is worth noting that
the ARM core slowdown is not surprising given that each
individual Xeon core is clocked faster and ThunderX cores
have different micro-architectural design goals, trading off
single-core performance for massive parallelism. As a result,
there are significantly more ARM cores in the ThunderX
CPU, and the unit price of x86 cores is usually higher than
its ARM counterparts ($1,300 for 12 x86 cores [39] vs $800
for 96 ARM cores [16]). This means that, for applications
that experience a relatively low degree of slowdown on ARM
cores, it is not immediately clear which CPU provides the
best system throughput within the same price budget.
To illustrate that no ISA is the clear winner in through-

put when running diverse workloads, we performed another

study. We selected five benchmarks, EP, FT, BT, LU, and Hy-
dro, based on the results from Figure 1, and ran them with
a variety of different composition ratios on the same set
of servers we used for the slowdown experiment. We mea-
sured the system throughput, i.e., the number of benchmarks
completed in a 75 minute period. For each experiment, both
servers executed as many benchmarks as possible without
exceeding the number of available physical threads.

Figure 2: System throughput under different ratios of
EP/FT [9], BT/LU [9], and Hydro [61] on two Xeon
servers and two ThunderX servers.

Figure 2 shows the result of our study. Neither x86 nor
ARM has a clear advantage in all tested scenarios. x86 CPUs
have a higher throughput when there is an increasing num-
ber of relatively high-slowdown benchmarks (BT/LU/Hydro),
whereas ARM CPUs perform better when the workload is
mainly composed of low-slowdown benchmarks (EP/FT).
Further inspection of the highest slowdown benchmarks in
Figure 1 reveals that benchmarks like Hydro and VPVTS
contain large portions of single-instruction-multiple-data
(SIMD) instructions, accounting for more than 80% of bench-
mark execution time.

With SIMD instructions gaining more attention from chip
designers as a means to extract additional data parallelism
in various application domains (e.g., HPC [8], ML [75, 89],
computer vision [22, 69], cryptography [4, 44]), coupling to-
gether heterogeneous machines that have significant differ-
ences inmicro-architecture and SIMD extensions provides an
interesting platform for running diverse applications. While
the Xeon processor executes individual applications faster
than the ThunderX (especially for SIMD workloads), the
ThunderX integrates a much larger number of cores and can
therefore execute more applications in parallel.
For designers aiming to optimize the performance of a

heterogeneous-ISA system, this raises interesting questions:
(1) How should a workload consisting of a mixture of SIMD

and non-SIMD applications be scheduled to maximize
throughput?

(2) How does an application consisting of SIMD regions im-
pact the execution of co-executing workloads?

Cross-ISA Execution of SIMD Regions for Improved Performance SYSTOR ’19, June 3–5, 2019, Haifa, Israel

(3) Are there throughput advantages in migrating appli-
cations executing SIMD code across ISAs with different
SIMD widths?

In this work we investigate scheduling batch work-
loads consisting of SIMD and non-SIMD applications on
heterogeneous-ISA systems. We analyze the effects of how
SIMD and non-SIMD workloads interact on both x86-64 and
ARMv8 systems, which have SIMD widths of 512 and 128
bits, respectively. Additionally, we analyze the impact of
micro-architecture on system utilization, including where
applications should be scheduled to maximize throughput.
In order to conduct this investigation, we extend Popcorn
Linux [10] – an OS/compiler/run-time system infrastructure
for executing and migrating shared-memory applications
across non-cache-coherent heterogeneous-ISA CPUs.

This paper makes the following contributions:
• We develop a cross-ISA SIMD migration compiler/run-
time framework that enables applications contain-
ing SIMD instructions to be migrated between
heterogeneous-ISA CPUs with different SIMD widths.
The framework is built as an extension of Popcorn
Linux’s [10] compiler/run-time system infrastructure.

• We analyze the effects of co-executing SIMD and non-
SIMD workloads on a heterogeneous-ISA system to
understand the impact of micro-architectural hetero-
geneity and SIMD/non-SIMD workload composition
on system throughput.

• Using insights gained from our analysis, we develop a
SIMD-aware scheduler that monitors system workload
and migrates applications executing SIMD regions be-
tween heterogeneous-ISA CPUs to improve system
throughput. Our evaluations reveal up to 36% through-
put gains over homogeneous-ISA CPUs.

2 Background

2.1 SIMD Instructions
SIMD instructions are instructions where a single operation
is performed on multiple data elements. They help perform
multiple calculations in parallel as well as amortize CPU core
front-end costs (instruction cache pressure, decoding/issue
latency) and are thus an attractive addition to ISAs. For ex-
ample, Intel continues to widen its AVX vector extensions
to 512 bits [38] and add new capabilities like neural network
instructions [14]. Similarly, ARM has introduced its Scal-
able Vector Extension [5] with width-agnostic instructions
to complement its existing NEON SIMD extension [6].
Extending SIMD width does not come for free. Since the

CPU executes multiple instructions at once, significantly
more power is consumed and thus the CPU must reduce its
clock speed to avoid overheating. Intel’s CPUs are a perfect

example of this trade-off. Intel CPUs use dynamic voltage
frequency scaling (DVFS) to adjust CPU frequency during
runtime. When encountering SIMD-intensive code, the CPU
dramatically scales down frequency (known as the AVX fre-
quency [38]) to limit power consumption and reduce heat.

2.2 Cross-ISA Execution Migration
Infrastructure

Currently, there does not exist a commodity heterogeneous-
ISA chip multiprocessor with cache-coherent shared mem-
ory. To approximate such a machine, we connected an Intel
Xeon server (x86-64) to a Cavium ThunderX server (ARMv8)
via Infiniband. Table 1 shows the server details. To support
cross-ISA execution, the system software must provide two
capabilities: i) the ability to migrate threads and ii) the ability
to migrate an application’s data between the servers. We
build on Popcorn Linux [10], an operating system, compiler,
and runtime that provides system software support for cross-
ISA execution migration.

Table 1: Server configurations.
Name Intel Xeon Cavium ThunderX

Generation Gold 5118 1
ISA x86-64 ARMv8

Micro-architecture OoO IO
Number of Cores 12 96
Number of Threads 24 96

RAM Size 48 GB 128 GB
SIMD Register Width 512 bit 128 bit

Popcorn Linux uses a replicated-kernel OS design, where
kernels on separate machines communicate via message
passing to provide user applications the illusion of a sin-
gle machine. The OS provides a thread migration service,
whereby threads call into the kernel and transparently re-
sume execution on the destination architecture. Underneath,
the originating kernel (origin) transfers the thread’s con-
text to the destination kernel (remote) to be re-instantiated
and returned to user-space. Additionally, the OS provides a
page migration service that transfers an application’s data
between machines on demand. When initially migrated to
a new machine, the application has no pages mapped into
memory – all memory accesses result in page faults. The
OS’s page fault handler is modified to intercept the faulting
accesses, allowing the kernels to observe data accessed by
threads and coordinate to migrate page data between ma-
chines. Pages are unmapped from the origin and mapped
into the thread’s address space on the remote.
While these capabilities are sufficient for migrating

threads and application data pages between machines, they
are not sufficient for cross-ISA execution. Popcorn Linux’s
compiler generates multi-ISA binaries that are suitable for

SYSTOR ’19, June 3–5, 2019, Haifa, Israel Y. Pang et al.

cross-ISA execution. In multi-ISA binaries, the application’s
virtual address space is aligned so that references to sym-
bols (global data, function addresses) are identical across
all architectures. For execution state that is tailored to each
ISA’s capabilities (stack, register set), the compiler generates
metadata describing the function activation layout.

When migrating between architectures, Popcorn Linux’s
run-time parses the metadata for all function activations cur-
rently on the stack and transforms them between ISA-specific
formats. After this state transformation, the runtime hands
the new stack and register set to the OS’s thread migration
service to be restarted on the destination architecture. By
aligning as much of the virtual address space as possible and
only transforming the pieces that are tailored to each ISA,
most of the application’s state is valid across architectures,
incurring minimal thread and data migration time.
In order to generate multi-ISA binaries, Popcorn Linux’s

compiler builds on LLVM’s modularity to generate object
files for all target architectures. The compiler’s front- and
middle-ends generate optimized LLVM bitcode from the ap-
plication source. Threads can only migrate between architec-
tures at equivalence points [87], i.e., points where execution
has reached a semantically equivalent location and there
exists a valid mapping between each ISA’s execution state.
A pass inserts call-outs to a migration library at equivalence
points to enable thread migration between architectures. Be-
cause threads can only migrate at the inserted call-outs, there
is a tradeoff between howmanymigration points are inserted
into the code (and the associated call overheads) versus how
long it takes a thread to respond to a migration request. Fi-
nally, a pass tags each call site with metadata describing all
the live values at that location, as the run-time must be able
to recreate the sequence of all function activations in the
destination ISA’s format.
The LLVM bitcode instrumented with migration points

and live value metadata is passed to all target ISA backends
for code generation. As the bitcode is lowered to machine
code for each ISA, the backend records the locations of the
live values specified by the middle-end, i.e., stored in a reg-
ister or a stack slot. Note that the same set of live values is
passed to each backend, and thus the same values are alive at
each call site, meaning the runtime only needs to determine
where to copy each live value for each ISA. In addition to live
value locations, the compiler records per-function informa-
tion such as callee-saved register locations and frame sizes.
Each call site is also tagged with a unique ID to correlate
call sites across architectures at run-time. The linker takes
the object files for each architecture as input and emits a
multi-ISA binary with an aligned virtual address space and
the transformation metadata.
At run-time, threads execute like normal. When threads

reach a migration point, they call out to the migration library

to check if migration was requested, and if so, migrate to the
requested destination. Threads check for migration requests
via syscall – the kernel maintains a per-thread flag that can
be set within the application or by external processes. If a mi-
gration is requested, the thread takes a snapshot of its current
register set and begins transforming its stack and register
set. First, the thread unwinds its stack to determine which
activations are currently alive and to load each function’s
metadata. Next, the thread goes frame-by-frame from the
most recently called function inwards, copying live values to
the correct destination-ISA location. After transformation,
the runtime passes the transformed register set for the out-
ermost function to the OS’s thread migration service. The
kernel transfers the register set to the destination, which
instantiates a new thread with the transformed register set
and returns the thread to userspace. The thread exits the
runtime on the destination and resumes normal execution
as if it were still executing on the same machine.

3 Cross-ISA SIMD Migration Framework

3.1 Definitions
We define a SIMD region as a piece of code within a pro-
gram that includes usage of SIMD instructions, such as a
vectorized matrix computation. A SIMD region’s size can
vary in execution time and a program can contain any num-
ber of SIMD regions. Nested SIMD regions are considered
a single SIMD region. A SIMD workload is defined as a set
of applications in which every application has at least one
SIMD region. In contrast, a non-SIMD workload is a set of
applications that have no SIMD regions. Our work enables
migration capability within SIMD regions; the framework
can migrate any program in a SIMD workload across ISA-
different CPUs for increased system throughput. We define
a program to be SIMD-intensive if 50% of program execution
time is in SIMD regions.

3.2 Basic SIMD Region Migration
The main obstacle for enabling SIMD region migration is
identifying a suitable location inside each SIMD region for
migration. The compiler’s intermediate representation (IR)
provides a means to achieve this. Upon inspection of multiple
SIMD IRs generated by the LLVM compiler [49], we observe
that SIMD computation at the LLVM IR level follows a very
predictable code flow, as shown in Figure 3. In this figure,
"Baseline" and "PGO-based" (explained in Section 3.4) are
two different approaches for inserting migration points.

The majority of SIMD computations occur within a single
basic block. In cases where a SIMD region spans multiple
basic blocks, at least one of those basic blocks contain this

Cross-ISA Execution of SIMD Regions for Improved Performance SYSTOR ’19, June 3–5, 2019, Haifa, Israel

Figure 3: Cross-ISA SIMD migration approach. Green
dotted lines indicate modifications applied for both
approaches.

code flow. In Popcorn Linux [10], equivalence points [87] are
identified as “migration points” – i.e., program points where
execution can be migrated across ISAs. Function boundaries
are naturally occurring equivalence points. Popcorn Linux’s
compiler automatically inserts migration points at function
entries and exits. We extend this approach. We insert new
equivalence points by providing new function boundaries
inside a SIMD region via “dummy” function calls after the
vector index is calculated.

3.3 Vector Unrolling
After inserting migration points, we must ensure that the
program executes correctly after (potential) migration. Be-
cause each ISA implements SIMD operations with varying
widths, the number of loop iterations needed for each SIMD
region varies. Our framework needs to account for combin-
ing different numbers of loop iterations for x86 and ARM
due to their different SIMD widths.
Consider the example in Figure 4, in which one SIMD

region is vectorized for ISA A and ISA B, whose SIMDwidths
vary by a factor of two. Suppose there are 1000 element
need to be computed, thus, ISA A will take half as many
iterations (250) as ISA B (500) to complete the task. This
discrepancy in the number of elements calculated at each
iteration is inefficient whenmigrating between different ISAs
inside SIMD regions near the end of iterations. This because
a single element calculation (inefficient usage of available
SIMD instruction) needs to be performed if the remaining
element is not large enough for a single SIMD loop iteration
(calculating element 998-1000 can use SIMD instruction on
ISA B but not on ISA A). There can also exist corner cases
such as, the framework can try to migrate from ISA B to
ISA A at the start of the last iteration on ISA B and exit on
ISA A. In this case, the result will perform two unnecessary
calculations at the end

One way to prevent this is by unrolling the loop as many
times as the least common multiple (LCM) of both ISAs’

Figure 4: Vector unroll example.

SIMD width so that the same number of calculations are
done in a single loop iteration. In LLVM, the loop vectorizer
uses a cost model to decide on unroll factor and users can
force the vectorizer to use specific values [55]. The LCM
approach is compatible with any compiler optimization. The
LCM is generated based on the final number of elements that
are processed in each iteration after compiler optimization
(a SIMD width of 2 unrolled three times is equivalent to a
SIMDwidth of 6). Hence, for Figure 4’s example, the problem
is solved by unrolling twice on ISA B. Therefore, each time
ISA B performs operations on four elements, it is identical to
the number of elements performed in a single loop iteration
for ISA A. This technique also helps to reduce the instru-
mentation overhead (discussed in detail in Section 3.4) by
increasing the migration check interval.

3.4 SIMD Region Optimization
SIMD operations are meant to speed up computation, and
in most cases, each SIMD loop iteration executes relatively
quickly. However, if the compiler blindly inserts migration
points at the beginning of each SIMD loop iteration as dis-
cussed in Section 3.2, the program will suffer significant
execution overhead. This overhead is mainly due to the ad-
ditional system calls to check for a migration decision (i.e.,
whether or not to migrate). For SIMD-intensive programs
with a large number of loop iterations that never actually mi-
grate, naïvely executing system calls to check at every loop
iteration can harm performance. Nonetheless, applications
should be able to quickly respond to migration requests to
efficiently leverage heterogeneous-ISA systems.

In order for the program to quickly respond to migration
requests as well as incur low instrumentation overhead when
migrated , we propose a two step profile-guided optimization
(PGO) approach, similar to LLVM’s built-in PGO [12, 56, 57],
to guide the insertion of migration points. In step one, we
compile the program with instrumentation around SIMD
regions to calculate each SIMD region’s execution time. The
results are logged in a file. Based on the results, in step two,
we perform two actions. First, we eliminate migration points

SYSTOR ’19, June 3–5, 2019, Haifa, Israel Y. Pang et al.

inside smaller SIMD regions. Second, we adjust the granular-
ity at which the application checks for migration decisions
by only executing migration checks at certain iteration in-
tervals (this iteration number can be varied based on the
user’s desire for responsiveness and loop unrolling factors).
The program is then recompiled such that migration points
only trigger when certain iterations are reached. Figure 3’s
blue lines illustrate the PGO approach’s second step being
applied. Our evaluation reveals that the instrumented SIMD
benchmarks when using PGO suffer only 5% overhead on
average.

3.5 SIMD-aware Scheduling
Compiler-level infrastructural support for cross-ISA execu-
tion migration within SIMD regions allows us to explore the
possibilities of leveraging ISA affinity [85] to increase system
throughput. This, however, requires a SIMD-aware scheduler
– i.e., one that can decide when to migrate an application
with SIMD regions from one ISA to another to increase the
overall throughput.

We propose a scheduling policy to achieve this goal. Our
policy assumes that the final slowdown (taking into consider-
ations all factors, such as clock speed andmicro-architectural
differences), for each application on each different plat-
form is known through profiling in our two-step PGO ap-
proach.1 Our policy is centered around the idea that the
speedup gained from executing an application on the opti-
mal ISA core should outweigh the slowdown other applica-
tions suffer from not running on that core. In other words,

speedup_of _app_X
slowdown_of _app_Y > 1

For example, consider two applications A and B, where A
runs 10x slower on an ARM core than on an x86 core, and B
runs 5x slower on an ARM core than on an x86 core. Since
the speedup gained from running A on the x86 core (10x)
is greater than the slowdown B experiences from running
on the ARM core (5x), it is likely effective to schedule A on
the x86 core and B on the ARM core (assuming there is only
one ARM core and one x86 core available) for improving the
system throughput. To reduce the complexity of comparing
every application based on their ISA slowdown, it is reason-
able to categorize applications into three slowdown groups
based on their individual ISA slowdown and the hardware
thread count (ht) difference between the two ISA-different
servers, as follows:

App =

G_High_Slowdown, if Slowdown ≥ ∆2ht
G_Medium_Slowdown, if ∆ht < Slowdown < ∆2ht
G_Low_Slowdown, if Slowdown ≤ ∆ht

1We restrict the scope of our work to platforms with two ISAs.

The reason behind using hardware thread count difference
as a classification metric is that application slowdown’s im-
pact on system throughput can be compensated by executing
more in parallel. Thus, these two factors are closely related.
This model can be extended for future multi-ISA systems
(i.e., more than two ISAs) as long as the user identifies a
“baseline” platform to compare. In the above equation, ∆ht
represents the hardware thread count difference between the
two ISA-different servers. Low slowdown applications have
low affinity to either CPU and are most likely to benefit from
the extra cores. Medium slowdown applications have higher
affinity towards the faster CPU, but the slowdown is likely
equal to or close to the hardware thread count difference
between the two servers. Therefore, they are likely to expe-
rience a smaller degree of throughput degradation. Lastly,
high slowdown benchmark applications have extremely high
affinity towards the faster CPU and thus the speedup gain of
running on the faster cores easily outweighs the maximum
hardware thread count difference.
Our scheduling policy prioritizes executing high slow-

down group members on the faster server (x86) as often as
possible, followed by medium slowdown group members,
and finally the low slowdown group. Our scheduler is im-
plemented using an event-driven client-server model. Each
application communicates with the scheduler upon three
events: (1) arrival into the system queue, (2) upon application
completion, and (3) after a migration is completed. Migration
points, which are essentially callbacks for the scheduler, are
inserted into the application.

Figure 5: Scheduler’s decision making process.

The application communicates its slowdown information
to the scheduler upon arrival, which then determines its
slowdown group. The scheduler tracks applications in both
servers and makes migration decisions whenever the migra-
tion callback is triggered. The scheduler runs on one of the
server cores (ThunderX in our experimental setup due to
having more cores). The scheduler always tries to schedule

Cross-ISA Execution of SIMD Regions for Improved Performance SYSTOR ’19, June 3–5, 2019, Haifa, Israel

applications with a higher x86 affinity on the x86 server with-
out overloading it, and migrates applications to the ARM
server after all the x86 cores have been utilized. The extra
communication between the scheduler and the processes
incurs a 5% overhead on average. Figure 5 illustrates the
scheduler’s decision tree.

4 Experimental Setup
Table 1 describes the key characteristics of the
heterogeneous-ISA servers that we used in our ex-
periments. We considered four server configurations for
comparison: (1) a homogeneous system composed of two
Xeon servers, called “x86-static”; (2) a homogeneous system
composed of two ThunderX servers, called “ARM-static”;
(3) a heterogeneous system composed of one ThunderX
server and one Xeon server, called “het-static”, wherein
applications are statically pinned to the next available
core with the highest ISA affinity and run to completion
on that core (i.e., no migration); and (4) a heterogeneous
system composed of one ThunderX server and one Xeon
server with cross-ISA SIMD migration enabled using the
aforementioned techniques, called “het-dynamic”. x86-static,
ARM-static, and het-static serve as a baseline to evaluate the
effectiveness of het-dynamic and do not migrate applications
between servers. For het-dynamic, the two servers are
interconnected via RDMA over Infiniband (56Gbps). We use
factory-specified settings because we are trying to evaluate
the maximum performance of each machine despite their
micro/macro-architectural differences and are not interested
in trying to isolate difference due solely to SIMD.
We used the same benchmarks as in Figure 1, compiled

in two different ways for our experimental study. For het-
dynamic, the benchmarks are compiled with the migration
instrumentation described in Section 3. For the baseline con-
figurations, the benchmarks are compiled without any in-
strumentation to avoid unnecessary overhead and to ensure
a fair comparison (applications do not migrate in these cases).
Currently, this PGO-based approach is done manually. We
profiled the SIMD benchmarks and instrumented the SIMD
regions to check for migration once every second. Because
each benchmark was profiled beforehand, the relative slow-
down of all applications is known up front when setting up
classification groups for schedulers.
Our evaluation workload is generated by a script that

starts a workload batch with a predefined SIMD/non-SIMD
ratio of benchmark composition. To ensure fairness, in the
first iteration, the workload script assigns benchmarks based
on affinities. Then when all cores are fully occupied, the
script randomly assigns benchmarks remaining in the work-
load batch to the next available free core to best mimic a
dynamic workload scenario. In a dynamic workload scenario,

the incoming benchmarks can not be predicted but the over-
all ratio can be estimated. If a workload batch is finished, the
script regenerates an identical batch from which to select.
This process continues until the evaluation period ends. To
ensure a fair comparison, we used the same random seed so
that each configuration has the same benchmark selection
outcome for every run. Each experiment is run for a duration
of 75 minutes. The rationale behind this is that most of the
benchmarks execute in about 3 to 5 minutes when running
on the x86 CPU; a period of 75 minutes is large enough to
mitigate the impact of noise.

5 Experimental Results
We evaluate our proposed framework to understand the
effectiveness of het-dynamic on improving system through-
put on mixed non-SIMD/SIMD workloads. To this end, we
conducted two sets of experiments. The first set considered
workloads composed of two applications: one non-SIMD
benchmark and one SIMD benchmark. The goal of this ex-
periment is to determine theworkloads that yield throughput
gains for het-dynamic. By focusing on only two applications,
we can carefully control individual benchmarks with differ-
ent slowdowns.
Using the insights gained from these experiments, our

second set of experiments considered a more realistic work-
load consisting of multiple non-SIMD and SIMD benchmarks.
For easier comparison, we used the Hydro benchmark from
the Livermoore Loops suite [61] as the designated SIMD
benchmark for both sets of experiments.

5.1 Two-application Workload
Figures 6a and 6b show the system throughput of a two-
application workload under two different SIMD/non-SIMD
ratios: 12.5/87.5% and 25/75% respectively. The x-axis repre-
sents the benchmarks tested as the non-SIMD benchmark,
arranged in increasing slowdown order according to Fig-
ure 1, with the leftmost being EP from the NPB suite [9],
which has the lowest slowdown, and the rightmost being
CG from NPB, which has the highest slowdown. The y-axis
is the total number of benchmarks completed in a testing
period of 75 minutes, where higher is better. The upper por-
tion of each bar represents the number of SIMD benchmarks
completed and the bottom portion represents the non-SIMD
benchmarks completed in the testing period.

These figures reveal that het-dynamic consistently outper-
forms het-static. For the 12.5% SIMD scenario, het-dynamic
outperforms all baselines in three cases: EP, K-means, and FT.
EP has the best performance gain of ∼36% over the next best
baseline. However, the performance gain shrinks to ∼14%
for K-means and ∼11% for FT. For other benchmarks with

SYSTOR ’19, June 3–5, 2019, Haifa, Israel Y. Pang et al.

4
0

200

400

600

800

1000

1200

1400

1600

1800

2000

he
t-d

yn
am

ic

he
t-s

ta
tic

x8
6-

st
at

ic

ar
m

-s
ta

tic

he
t-d

yn
am

ic

he
t-s

ta
tic

x8
6-

st
at

ic

ar
m

-s
ta

tic

he
t-d

yn
am

ic

he
t-s

ta
tic

x8
6-

st
at

ic

ar
m

-s
ta

tic

he
t-d

yn
am

ic

he
t-s

ta
tic

x8
6-

st
at

ic

ar
m

-s
ta

tic

he
t-d

yn
am

ic

he
t-s

ta
tic

x8
6-

st
at

ic

ar
m

-s
ta

tic

he
t-d

yn
am

ic

he
t-s

ta
tic

x8
6-

st
at

ic

ar
m

-s
ta

tic

he
t-d

yn
am

ic

he
t-s

ta
tic

x8
6-

st
at

ic

ar
m

-s
ta

tic

NPB-EP PHX-K-means NPB-FT NPB-UA NPB-BT NPB-LU NPB-CG

Sy
st

em
 T

hr
ou

gh
pu

t

Normal SIMD

(a) 1/8 SIMD/non-SIMD ratio.

40

200

400

600

800

1000

1200

1400

1600

1800

he
t-d

yn
am

ic

he
t-s

ta
tic

x8
6-

st
at

ic

ar
m

-s
ta

tic

he
t-d

yn
am

ic

he
t-s

ta
tic

x8
6-

st
at

ic

ar
m

-s
ta

tic

he
t-d

yn
am

ic

he
t-s

ta
tic

x8
6-

st
at

ic

ar
m

-s
ta

tic

he
t-d

yn
am

ic

he
t-s

ta
tic

x8
6-

st
at

ic

ar
m

-s
ta

tic

he
t-d

yn
am

ic

he
t-s

ta
tic

x8
6-

st
at

ic

ar
m

-s
ta

tic

he
t-d

yn
am

ic

he
t-s

ta
tic

x8
6-

st
at

ic

ar
m

-s
ta

tic

he
t-d

yn
am

ic

he
t-s

ta
tic

x8
6-

st
at

ic

ar
m

-s
ta

tic

NPB-EP PHX-K-means NPB-FT NPB-UA NPB-BT NPB-LU NPB-CG

Sy
st

em
 T

hr
ou

gh
pu

t

SIMD Normal

(b) 1/4 SIMD/non-SIMD ratio.

Figure 6: Throughput of two-application workloads with different SIMD/non-SIMD ratios.

increasing slowdown, x86-static consistently outperforms
het-dynamic and also het-static and ARM-static. An average
of 6.3% of non-SIMD benchmarks migrated to ARM in or-
der to vacate x86 cores for SIMD applications and no SIMD
application are spilled onto ARM.
Similar trends occur in the 25% SIMD scenario – het-

dynamic still has better performance for EP, K-means, and
FT. However, the performance gain drops down to ∼19%,
∼8% and ∼3% respectively. This performance decrease can
be attributed to an average of 5.1% SIMD benchmarks spilled
onto ARM. However, every spilled SIMD benchmark even-
tually migrates back to x86 cores. The average percentage
of non-SIMD benchmarks migrated to vacate x86 cores for
SIMD benchmarks is around 12.8%. This almost doubled per-
centage is likely due to the 2x increase in SIMD ratio. We also
tested larger SIMD ratios of 50% (i.e., 50% SIMD applications)
and 100% (i.e., all SIMD). In both cases, het-dynamic shows
no performance gain over x86-static.

From these results, we can draw several conclusions. First,
het-dynamic performs well with low SIMD ratio workloads.
For workloads with larger SIMD ratios, het-dynamic lacks
enough high affinity x86 cores to execute SIMD applications;
thus, spilling SIMD applications onto ARM has a negative
impact on throughput. The spilled SIMD applications are
forced to execute on a significantly slower architecture with
narrower SIMD widths until one of the existing SIMD appli-
cations on an x86 core finishes. This degrades throughput.
Second, het-dynamic yields better throughput for low

slowdown applications. In both Figures 6a and 6b, all three
benchmarks either belong to or close enough to the low slow-
down group. Low slowdown applications allow het-dynamic
to compensate for the slowdown with the higher number
of ThunderX cores. This allows the system to execute more
applications in parallel, thereby outperforming x86-static.
Despite a low SIMD ratio, het-dynamic is also better than
ARM-static because there are still a few SIMD benchmarks
in the mix. In the ARM-static case, the SIMD applications be-
come stragglers due to extreme slowdowns, which ultimately

harms throughput. However, het-dynamic’s scheduler better
matches applications to cores for improving throughput.
Lastly, the impact of het-dynamic’s scheduler on system

throughput cannot be ignored. The scheduler allows het-
dynamic to better allocate resources based on the incoming
application’s ISA affinity. The impact of the scheduler can
also be reflected by the fact that the EP-Hydro (SIMD) work-
load combination has the best performance gain in both
1/4 and 1/8 scenarios. The EP-Hydro workload combina-
tion contains two benchmarks that have the most diverse
CPU affinity. Thus, migrating processes across ISAs to match
their ISA affinities enables het-dynamic to obtain the largest
throughput gain (36%) over the baselines.

5.2 Multi-application Workloads
Figures 7a and 7b show the system throughput of work-
loads composed of more than two applications with the high
slowdown benchmark (SIMD only) fixed at 12.5% and 25%,
respectively. For both scenarios, we fixed the ratio of the
high slowdown group benchmarks and only selected SIMD
benchmarks belonging to that group. This is done to further
evaluate SIMD’s impact on system performance. For each
scenario, we varied the ratio of benchmarks belonging to low
and medium slowdown groups. The x-axis represents each
group’s ratio and the y-axis shows the system throughput.

In the 12.5% high slowdown group (SIMD) ratio scenario,
het-dynamic outperforms both x86-static and ARM-static in
all tested cases with an average gain of 14.6% and a maximum
gain of ∼26% over the next best homogeneous baseline with
workloads consisting of 12.5%, 31.25%, and 56.25% of high,
medium, and low slowdown group members respectively.
However, similar to the two-application workload experi-
ments, the performance gain shrinks as the percentage of
medium slowdown benchmarks increases. This is due to our
scheduling policies reduce effectiveness when workloads
consist of more benchmarks biased towards a single ISA.
An average of 23.1% of total benchmarks are migrated to
ARM during the experiment to vacate cores for benchmarks

Cross-ISA Execution of SIMD Regions for Improved Performance SYSTOR ’19, June 3–5, 2019, Haifa, Israel

0
200
400
600
800

1000
1200
1400
1600

1/8 | 0 | 7/8 1/8 | 1/16 | 13/16 1/8 | 3/16 | 11/16 1/8 | 5/16 | 9/16 1/8 | 7/16 | 7/16 1/8 | 1/2 | 3/8

Sy
st

em
 T

hr
ou

gh
pu

t

High/Medium/Low Slowdown Benchmark Percentage

het-dynamic x86-static ARM-static

(a) 1/8 SIMD ratio.

0
200
400
600
800

1000
1200
1400
1600

1/4 | 0 | 3/4 1/4 | 1/16 | 11/16 1/4 | 3/16 | 9/16 1/4 | 5/16 | 7/16 1/4 | 7/16 | 5/16 1/4 | 1/2 | 1/4

Sy
st

em
 T

hr
ou

gh
pu

t

High/Medium/Low Slowdown Benchmark Percentage

het-dynamic x86-static ARM-static

(b) 1/4 SIMD ratio.

Figure 7: Throughput of multi-application workloads with different SIMD/non-SIMD ratios.

with better affinity. 24.7% of total benchmarks on average are
eventually migrated back to x86. This larger migrate back
percentage indicates that our scheduler is able to utilize the
system to migrate back applications that started earlier to
faster cores if there is no difference in affinity.
Similar trends also occur in the 25% scenario – het-

dynamic still has the best performance in four out of six
test cases, achieving a maximum performance gain of 31.1%.
An average of 28% of total benchmarks are migrated to ARM
during the experiment to vacate cores for applications with
better affinity. An average of 24.4% are eventually migrated
back to x86. We tested larger high slowdown group ratios
(e.g., 50%, 100%). In both cases, het-dynamic has no perfor-
mance gain over x86-static in all workload cases.

From the multi-application workload experiment, we gain
further understanding of our heterogeneous-ISA systems
design. Het-dynamic is best equipped to handle workloads
that contain large low slowdown and medium slowdown
application ratios. This further expands the “sweet spot” of
het-dynamic because in the two-application scenario, we do
not see any benchmark that has medium slowdown actually
benefiting from het-dynamic.
The multi-application experiments thus reveal that in a

more realistic workload with multiple diverse applications,
het-dynamic can achieve increased performance for appli-
cations with slightly higher x86 affinity. het-dynamic can
therefore achieve higher throughput over a broader work-
load spectrum than comparable homogeneous setups. This is
achieved by better matching each application’s ISA affinity
to optimal cores with additional migration and scheduling
capabilities, improving the system throughput.

6 Related Work
The vast majority of past efforts in heterogeneous computing
focus on CPU/GPU systems [28, 63] in which a GPU acceler-
ator device is attached to a host CPU [51, 66, 67, 78]. Gad, et
al. [28] propose a similar context migration process between
CPU and GPU. Past efforts have also focused on single-ISA
heterogeneous systems [45–47] which use cores of the same
ISA but with different ISA extensions or micro-architecture
(e.g., ARM’s big.LITTLE [29], NVidia’s Kal-El [67]).

More recently, there have been several efforts on
heterogeneous-ISA systems [10, 50, 53, 84, 85]. Venkat, et
al. [85] investigates the design space of heterogeneous ISAs
using general-purpose ISA cores (e.g., x86, Thumb, Alpha) to
evaluate their effectiveness for improving performance and
energy. Their work reveals that many applications, especially
in the HPC domain, exhibit ISA affinity, often in different
program phases. ISA affinity was further studied in [1, 2].
Exploiting ISA affinity for performance and energy gains re-
quires a cross-ISA execution migration infrastructure, which
can transform the program state from one ISA format to
another and migrate execution to the optimal-ISA core. Bar-
balace, et al. present a complete software stack – Popcorn
Linux – that supports a cross-ISA execution migration in-
frastructure which we summarize in Section 2.2 [10]. These
efforts do not consider cross-ISA migration inside SIMD re-
gions – exactly the problem that we study. We extend [10]’s
compiler and run-time for cross-ISA SIMD migration.

Lee, et al. [50] investigate the offloading of compute-heavy
workloads frommobile platforms, which often use RISC-style
ISAs such as ARM, to server platforms that use CISC-style
ISAs such as x86. They present a compiler infrastructure
that generates binaries that can execute on multiple ISAs
such as those with uniform memory layouts, address con-
version code, endianness translation/conversion code, and a
run-time system for orchestrating the offloading of compu-
tations across ISA-different platforms. We do not consider
offloading tasks because our goal is to maximize throughput,
which requires us to utilize both servers as much as possible,
rather than having one platform wait for the completion
of the offloaded tasks. Offloading and migrating processes
are also different in terms of process execution. Offloaded
processes require synchronization at the end of the offloaded
computation with their parent processes and exit at the origi-
nal platform. In contrast, a migrated process is able to exit on
the migrated architecture since its call stack is transformed.
Lin, et al. [53] is very similar to [10], but focuses on mobile
incoherent domain SoCs whereas our work focuses on the
server space. Venkat, et al. [84] focuses on leveraging a single
large superset ISA composed of fully custom ISAs but scopes
out cross-ISA migration and lacks a real prototype.

SYSTOR ’19, June 3–5, 2019, Haifa, Israel Y. Pang et al.

With SIMD gaining more attention from chip vendors [6,
38, 48] as a means to extract additional data parallelism,
research interest in this space has surged. Most efforts fo-
cus on redesigning algorithms to leverage SIMD instruc-
tions [17, 31, 34, 36, 72], exploring SIMD usage in new appli-
cation domains [18, 21, 32, 90], and improving SIMD code
generation at the compiler level [7, 27]. SIMD instructions
have also been considered in dynamic binary translation
(DBT) efforts [19, 26, 33, 52, 54, 71], which focus on efficient
translation of SIMD registers between ISAs. In addition to
cross-ISA SIMD translations at migration points, our work
also conducts SIMD-aware scheduling to maximize system
throughput of workloads composed of SIMD and non-SIMD
applications – entirely out of scope for DBT efforts.
Past efforts have also focused on scheduling in hetero-

geneous systems. However, most of these efforts focus
on single-ISA heterogeneous systems, where the hetero-
geneity is in terms of execution frequency [59, 74], micro-
architecture [43], cache sizes [41], or performance goals [73].
These schedulers follow the same principle of allocating re-
sources to applications based on their resource demand – e.g.,
if an application requires a higher usage of a resource (fre-
quency, micro-architectural features, cache line), an attempt
is made to grant that resource.
Scheduling in heterogeneous-ISA systems has received

less attention. Beisel, et al. [11] extend the Linux CFS to sup-
port cooperativemultitasking for heterogeneous accelerators
(CPU/GPU). Barbalace, et al.’s [10] scheduler balances thread
counts across ISA-different cores. Prodromou, et al. [76]
presents a machine learning-based program performance
predictor that drives an ML-based heterogeneous-ISA job
scheduler. These works have scoped out migration costs as
well as SIMD workloads. Karaoui, et al. [42] presents sched-
ulers for heterogeneous-ISA systems considering migration
costs, but scopes out SIMD workloads.

0

500

1000

1500

2000

2500

3000

EP KMEAN 2/3 FT_A UA_A BT_A LU_A CG_B

Sy
ste

m
 T

hr
ou

gh
pu

t

Xeon-Xeon Xeon-ThunderX

Xeon-ThunderX2 Xeon-Ampere

Figure 8: Throughput of het-static and x86-static on
ThunderX2 [83] and Ampere [20] servers.

7 Discussion and Future Directions
We believe that our work only scratches the surface of the
heterogeneous-ISA SIMD space. Many promising future di-
rections exist. For example, we scoped out optimizing energy
costs largely due to the process node gap between the two
servers that we selected. The Cavium ThunderX server (ini-
tially released in 2014) uses a more power consuming 28
nm process, whereas the Xeon server (released in 2018) uses
a more recent 14 nm process. Combined with the fact that
the ThunderX does not implement many energy saving fea-
tures such as low-power states, DVFS, and clock gating, the
ThunderX is not an energy efficient CPU.

Recent ARM servers such as Marvell’s ThunderX2 [83]
and Ampere’s eMAG server [20] are likely more energy ef-
ficient and have higher performance than ThunderX. We
could not evaluate het-dynamic on a Xeon-ThunderX2 or
a Xeon-Ampere configuration as that requires significant
amount of engineering effort in porting the Popcorn Linux
infrastructure necessary for cross-ISA migration on these
platforms. However, we measured het-static on both these
configurations as it does not involve cross-ISA migration;
Figure 8 shows these results.
het-static on Xeon-Ampere shows the best performance

with average throughput gain of 100% over het-dynamic
on Xeon-ThunderX and 76% over x86-static on Xeon-Xeon.
From our evaluation, we show that het-dynamic outperforms
het-static on similar heterogeneous-ISA servers. Thus, ex-
trapolating from Figure 8, het-dynamicwill likely outperform
het-static and x86-static on these newer servers. Another
promising direction is scheduling. Recent results such as [64]
reveal that machine learning-based approaches can accu-
rately predict program performance for superior scheduling
policies. This can be leveraged in the heterogeneous-ISA
SIMD scheduling space as well.

8 Conclusion
We championed the usability of het-ISA system compared
to mainstream homogeneous-ISA systems. We explored
whether in the space of SIMD, het-ISA systems can be
leveraged for performance gains. We extended the Popcorn
Linux [10] framework to support migration inside SIMD re-
gions. Efficiently using ISA affinity and dynamically migrat-
ing applications to use ISA optimal cores in heterogeneous-
ISA systems can result in significant performance gains over
homogeneous architectures. Enabling migration inside SIMD
regions allows us to tap into an important instruction set
that is widely used.
Our work’s main conclusion is that there is “no one

ISA/micro-architecture that fits all.” The fact that het-
dynamic allows two heterogeneous-ISA servers that are five

Cross-ISA Execution of SIMD Regions for Improved Performance SYSTOR ’19, June 3–5, 2019, Haifa, Israel

years apart in production to outperform two 2018-released
x86 servers is a strong validation of our results.

Acknowledgements
We thank the reviewers for their insightful comments
which have significantly improved the paper. This work
is supported in part by ONR under grants N00014-
13-1-0317, N00014-16-1-2711, and N00014-18-1-2022, and
NAVSEA/NEEC under grants 3003279297 and N00174-16-
C-0018.

References
[1] Ayaz Akram. 2017. A Study on the Impact of Instruction Set Architec-

tures on Processor's Performance. Master Thesis, Western Michigan
University.

[2] Ayaz Akram and Lina Sawalha. 2017. The Impact of ISAs on Perfor-
mance. In Workshop on Duplicating, Deconstructing and Debunking
(WDDD) co-located with 44th International Symposium on Computer
Architecture (ISCA), Toronto, Canada.

[3] Amazon. 2018. EC2 Instances Powered by ARM-based AWS
Graviton Processors. https://aws.amazon.com/blogs/aws/
new-ec2-instances-a1-powered-by-arm-based-aws-graviton-processors/.

[4] Kazumaro Aoki, Fumitaka Hoshino, Tetsutaro Kobayashi, and Hiroaki
Oguro. 2001. Elliptic Curve Arithmetic Using SIMD. In Information
Security, George I. Davida and Yair Frankel (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 235–247.

[5] ARM. 2018. ARM HPC tools for SVE. Technical Report. https://
developer.arm.com/products/software-development-tools/hpc/sve.

[6] ARM. 2018. NEON. Technical Report. https://developer.arm.com/
technologies/neon.

[7] Mehmet Ali Arslan, Flavius Gruian, Krzysztof Kuchcinski, and Andréas
Karlsson. 2016. Code generation for a SIMD architecture with custom
memory organisation. In Design and Architectures for Signal and Image
Processing (DASIP), 2016 Conference on. IEEE, 90–97.

[8] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. 1994. Compiler
Transformations for High-performance Computing. ACM Comput.
Surv. 26, 4 (Dec. 1994), 345–420.

[9] D. H. Bailey, E. Barszcz, L. Dagum, and H. D. Simon. 1992. NAS
parallel benchmark results. In Supercomputing ’92:Proceedings of the
1992 ACM/IEEE Conference on Supercomputing. 386–393.

[10] Antonio Barbalace, Robert Lyerly, Christopher Jelesnianski, Anthony
Carno, Ho-Ren Chuang, Vincent Legout, and Binoy Ravindran. 2017.
Breaking the Boundaries in Heterogeneous-ISA Datacenters. In Pro-
ceedings of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
’17). ACM, New York, NY, USA, 645–659. https://doi.org/10.1145/
3037697.3037738

[11] Tobias Beisel, Tobias Wiersema, Christian Plessl, and André
Brinkmann. 2011. Cooperative multitasking for heterogeneous ac-
celerators in the linux completely fair scheduler. In ASAP 2011-22nd
IEEE International Conference on Application-specific Systems, Architec-
tures and Processors. IEEE, 223–226.

[12] Chandler Carruth Bob Wilson, Diego Novillo. 2007. PGO and LLVM,
Status and Current Work. https://llvm.org/devmtg/2013-11/slides/
Carruth-PGO.pdf

[13] Shekhar Borkar. 2007. Thousand core chips: a technology perspective.
In Proceedings of the 44th annual Design Automation Conference. ACM,
746–749.

[14] Dennis Bradford, Sundaram Chinthamani, Jesus Corbal, Adhiraj Has-
san, Ken Janik, and Nawab Ali. 2017. Knights Mill: New Intel Processor
For Machine Learning. In Hot Chips 29.

[15] D. Callahan, J. Dongarra, and D. Levine. 1988. Vectorizing Compilers: A
Test Suite and Results. In Proceedings of the 1988 ACM/IEEE Conference
on Supercomputing (Supercomputing ’88). IEEE Computer Society Press,
Los Alamitos, CA, USA, 98–105.

[16] Cavium. 2013. ThunderX CN8890 - Cavium. https://en.wikichip.org/
wiki/cavium/thunderx/cn8890

[17] Hao Chen, Nicholas S Flann, and Daniel W Watson. 1998. Parallel
genetic simulated annealing: amassively parallel SIMD algorithm. IEEE
Transactions on Parallel and Distributed Systems 9, 2 (1998), 126–136.

[18] Chi Ching Chi, Mauricio Alvarez-Mesa, Benjamin Bross, Ben Juurlink,
and Thomas Schierl. 2015. SIMD acceleration for HEVC decoding.
IEEE Transactions on circuits and systems for video technology 25, 5
(2015), 841–855.

[19] Nathan Clark, Amir Hormati, Sami Yehia, Scott Mahlke, and Krisztian
Flautner. 2007. Liquid SIMD: Abstracting SIMD hardware using light-
weight dynamic mapping. In 2007 IEEE 13th International Symposium
on High Performance Computer Architecture. IEEE, 216–227.

[20] Ampere Computing. 2018. Ampere Processors. https://
amperecomputing.com/product/

[21] GregoryWCook and Edward J Delp. 1995. An investigation of scalable
SIMD I/O techniques with application to parallel JPEG compression.
Journal of Parallel and distributed computing 30, 2 (1995), 111–128.

[22] R. Cypher and J. L. C. Sanz. 1989. SIMD architectures and algorithms for
image processing and computer vision. IEEE Transactions on Acoustics,
Speech, and Signal Processing 37, 12 (Dec 1989), 2158–2174.

[23] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D.
Burger. 2011. Dark silicon and the end of multicore scaling. In 2011
38th Annual International Symposium on Computer Architecture (ISCA).
365–376.

[24] Michael Feldman. 2017. Intel Dumps Knights Hill, Future of
Xeon Phi Product Line Uncertain. https://www.top500.org/news/
intel-dumps-knights-hill-future-of-xeon-phi-product-line-uncertain/.

[25] Michael Feldman. 2018. Intel Ships Xeon Skylake Proces-
sor with Integrated FPGA. https://www.top500.org/news/
intel-ships-xeon-skylake-processor-with-integrated-fpga/.

[26] Sheng-Yu Fu, Ding-Yong Hong, Jan-Jan Wu, Pangfeng Liu, and Wei-
Chung Hsu. 2015. Simd code translation in an enhanced hqemu. In 2015
IEEE 21st International Conference on Parallel and Distributed Systems
(ICPADS). IEEE, 507–514.

[27] Sheng-Yu Fu, Jan-Jan Wu, and Wei-Chung Hsu. 2015. Improving SIMD
code generation in QEMU. In Proceedings of the 2015 design, automation
& test in europe conference & exhibition. EDA Consortium, 1233–1236.

[28] Ramy Gad, Tim Süß, and André Brinkmann. 2014. Compiler Driven
Automatic Kernel Context Migration for Heterogeneous Computing.
In 2014 IEEE 34th International Conference on Distributed Computing
Systems. IEEE, 389–398.

[29] P. Greenhalgh. 2011. big.LITTLE Processing with ARM Cortex-A15 &
Cortex-A7. Technical report, ARM.

[30] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee,
Jonghyun Yoon, Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon,
Sangyeun Cho, Jaeheon Jeong, and Duckhyun Chang. 2016. Biscuit:
A Framework for Near-data Processing of Big Data Workloads. In
Proceedings of the 43rd International Symposium on Computer Archi-
tecture (ISCA ’16). IEEE Press, Piscataway, NJ, USA, 153–165. https:
//doi.org/10.1109/ISCA.2016.23

[31] Arthur Hennequin, Ian Masliah, and Lionel Lacassagne. 2019. De-
signing efficient SIMD algorithms for direct Connected Component
Labeling. In Proceedings of the 5th Workshop on Programming Models
for SIMD/Vector Processing. ACM, 4.

https://aws.amazon.com/blogs/aws/new-ec2-instances-a1-powered-by-arm-based-aws-graviton-processors/
https://aws.amazon.com/blogs/aws/new-ec2-instances-a1-powered-by-arm-based-aws-graviton-processors/
https://developer.arm.com/products/software-development-tools/hpc/sve
https://developer.arm.com/products/software-development-tools/hpc/sve
https://developer.arm.com/technologies/neon
https://developer.arm.com/technologies/neon
https://doi.org/10.1145/3037697.3037738
https://doi.org/10.1145/3037697.3037738
https://llvm.org/devmtg/2013-11/slides/Carruth-PGO.pdf
https://llvm.org/devmtg/2013-11/slides/Carruth-PGO.pdf
https://en.wikichip.org/wiki/cavium/thunderx/cn8890
https://en.wikichip.org/wiki/cavium/thunderx/cn8890
https://amperecomputing.com/product/
https://amperecomputing.com/product/
https://www.top500.org/news/intel-dumps-knights-hill-future-of-xeon-phi-product-line-uncertain/
https://www.top500.org/news/intel-dumps-knights-hill-future-of-xeon-phi-product-line-uncertain/
https://www.top500.org/news/intel-ships-xeon-skylake-processor-with-integrated-fpga/
https://www.top500.org/news/intel-ships-xeon-skylake-processor-with-integrated-fpga/
https://doi.org/10.1109/ISCA.2016.23
https://doi.org/10.1109/ISCA.2016.23

SYSTOR ’19, June 3–5, 2019, Haifa, Israel Y. Pang et al.

[32] Johannes Hofmann, Jan Treibig, Georg Hager, and Gerhard Wellein.
2014. Comparing the performance of different x86 SIMD instruction
sets for a medical imaging application on modern multi-and manycore
chips. In Proceedings of the 2014 Workshop on Programming models for
SIMD/Vector processing. ACM, 57–64.

[33] Ding-Yong Hong, Sheng-Yu Fu, Yu-Ping Liu, Jan-Jan Wu, and Wei-
Chung Hsu. 2016. Exploiting longer SIMD lanes in dynamic binary
translation. In Parallel and Distributed Systems (ICPADS), 2016 IEEE
22nd International Conference on. IEEE, 853–860.

[34] IK Hong, ST Chung, HK Kim, YB Kim, YD Son, and ZH Cho. 2007.
Ultra fast symmetry and SIMD-based projection-backprojection (SSP)
algorithm for 3-D PET image reconstruction. IEEE transactions on
medical imaging 26, 6 (2007), 789–803.

[35] Joel Hruska. 2018. Intel Uses New Foveros 3D Chip-Stacking to Build
Core, Atom on Same Silicon. https://bit.ly/2SSQ62R

[36] Hiroshi Inoue, Takao Moriyama, Hideaki Komatsu, and Toshio
Nakatani. 2007. AA-sort: A new parallel sorting algorithm for multi-
core SIMD processors. In Parallel Architecture and Compilation Tech-
niques, 2007. PACT 2007. 16th International Conference on. IEEE, 189–
198.

[37] Texas Instruments. 2004. OMAP5912 Multimedia Processor Device
Overview and Architecture Reference Guide.

[38] Intel. 2013. Intel Advanced Vector Extensions 512 (Intel AVX-512).
https://intel.ly/2SyYl4i.

[39] Intel. 2017. Intel Xeon Gold 5118 Processor (16.5M Cache, 2.30
GHz) Product Specifications. https://ark.intel.com/products/120473/
Intel-Xeon-Gold-5118-Processor-16-5M-Cache-2-30-GHz-

[40] Intel. 2018. Intel Xeon Processor Scalable Family. https://intel.ly/
2t1apTH.

[41] Xiaowei Jiang, Asit Mishra, Li Zhao, Ravishankar Iyer, Zhen Fang,
Sadagopan Srinivasan, Srihari Makineni, Paul Brett, and Chita R Das.
2011. ACCESS: Smart scheduling for asymmetric cache CMPs. In High
Performance Computer Architecture (HPCA), 2011 IEEE 17th Interna-
tional Symposium on. IEEE, 527–538.

[42] Mohamed Karaoui, Anthony Carno, Robert Lyerly, Sang-Hoon Kim,
Pierre Olivier, Changwoo Min, and Binoy Ravindran. 2019. Sched-
uling HPC Workloads on Heterogeneous-ISA Architectures. In 24th
ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel
Programming (PPoPP’19). Poster paper.

[43] David Koufaty, Dheeraj Reddy, and Scott Hahn. 2010. Bias scheduling
in heterogeneous multi-core architectures. In Proceedings of the 5th
European conference on Computer systems. ACM, 125–138.

[44] Vlad Krasnov. 2017. On the dangers of Intel’s frequency scaling. https:
//blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/.

[45] Rakesh Kumar, Keith I Farkas, Norman P Jouppi, Parthasarathy Ran-
ganathan, and Dean M Tullsen. 2003. Single-ISA heterogeneous multi-
core architectures: The potential for processor power reduction. In
Proceedings of the 36th annual IEEE/ACM International Symposium on
Microarchitecture. IEEE Computer Society, 81.

[46] Rakesh Kumar, Dean M Tullsen, and Norman P Jouppi. 2006. Core
architecture optimization for heterogeneous chip multiprocessors. In
Parallel Architectures and Compilation Techniques (PACT), 2006 Inter-
national Conference on. IEEE, 23–32.

[47] Rakesh Kumar, Dean M Tullsen, Parthasarathy Ranganathan, Nor-
man P Jouppi, and Keith I Farkas. 2004. Single-ISA heterogeneous
multi-core architectures for multithreaded workload performance. In
Computer Architecture, 2004. Proceedings. 31st Annual International
Symposium on. IEEE, 64–75.

[48] Chris Lamont. 2011. Introduction to Intel Advanced Vector Extensions.
Technical Report. https://intel.ly/2ETCWyt.

[49] Chris Lattner andVikramAdve. 2004. LLVM:A compilation framework
for lifelong program analysis & transformation. In Proceedings of the

international symposium on Code generation and optimization: feedback-
directed and runtime optimization. IEEE Computer Society, 75.

[50] G. Lee, H. Park, S. Heo, K. Chang, H. Lee, and H. Kim. 2015.
Architecture-aware automatic computation offload for native appli-
cations. In 2015 48th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 521–532. https://doi.org/10.1145/2830772.
2830833

[51] Janghaeng Lee, Mehrzad Samadi, Yongjun Park, and Scott Mahlke.
2013. Transparent CPU-GPU collaboration for data-parallel kernels
on heterogeneous systems. In Proceedings of the 22nd international
conference on Parallel architectures and compilation techniques. IEEE
Press, 245–256.

[52] Jianhui Li, Qi Zhang, Shu Xu, and BoHuang. 2006. Optimizing dynamic
binary translation for SIMD instructions. In International Symposium
on Code Generation and Optimization (CGO’06). IEEE, 12–pp.

[53] Felix Xiaozhu Lin, Zhen Wang, and Lin Zhong. 2014. K2: A Mobile
Operating System for Heterogeneous Coherence Domains. In Proceed-
ings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’14). ACM,
New York, NY, USA, 285–300.

[54] Yu-Ping Liu, Ding-Yong Hong, Jan-Jan Wu, Sheng-Yu Fu, and Wei-
Chung Hsu. 2017. Exploiting Asymmetric SIMD Register Configura-
tions in ARM-to-x86 Dynamic Binary Translation. In 2017 26th Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT). IEEE, 343–355.

[55] LLVM. 2003. Auto-Vectorization in LLVM. https://llvm.org/docs/
Vectorizers.html

[56] LLVM. 2003. How To Build Clang and LLVM with Profile-Guided
Optimizations. https://llvm.org/docs/HowToBuildWithPGO.html

[57] LLVM. 2007. Profile Guided Optimization. https://clang.llvm.org/
docs/UsersManual.html#profile-guided-optimization

[58] Arm Ltd. 2017. Technologies | DynamIQ Arm Developer. https:
//developer.arm.com/technologies/dynamiq

[59] Luca Lugini, Vinicius Petrucci, and Daniel Mosse. 2012. Online thread
assignment for heterogeneous multicore systems. In Parallel Processing
Workshops (ICPPW), 2012 41st International Conference on. IEEE, 538–
544.

[60] Marvell. 2019. LiquidIO II 10/25GbE Adapter family. https://bit.ly/
2H7NWLk.

[61] F H McMahon. 1986. The Livermore Fortran kernels: a computer test
of the numerical performance range. Lawrence Berkeley Nat. Lab.,
Berkeley, CA. https://cds.cern.ch/record/178064

[62] Sparsh Mittal. 2016. A Survey of Techniques for Architecting and
Managing Asymmetric Multicore Processors. ACM Comput. Surv. 48,
3, Article 45 (Feb. 2016), 38 pages. https://doi.org/10.1145/2856125

[63] Sparsh Mittal and Jeffrey S. Vetter. 2015. A Survey of CPU-GPU
Heterogeneous Computing Techniques. ACM Comput. Surv. 47, 4,
Article 69 (July 2015), 35 pages. https://doi.org/10.1145/2788396

[64] D. Nemirovsky, T. Arkose, N. Markovic, M. Nemirovsky, O. Unsal,
and A. Cristal. 2017. A Machine Learning Approach for Performance
Prediction and Scheduling on Heterogeneous CPUs. In 2017 29th Inter-
national Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD). 121–128.

[65] Netronome. 2019. Agilio SmartNICs. https://www.netronome.com/
products/agilio-cx/.

[66] Nvidia. 2010. The Benefits of Multiple CPU Cores in Mobile De-
vices. https://www.nvidia.com/content/PDF/tegra_white_papers/
Benefits-of-Multi-core-CPUs-in-Mobile-Devices_Ver1.2.pdf

[67] Nvidia. 2011. Variable SMP - A Multi-Core CPU Architecture for Low
Power and High Performance. https://www.nvidia.com/content/PDF/
tegra_white_papers/tegra-whitepaper-0911b.pdf

https://bit.ly/2SSQ62R
https://intel.ly/2SyYl4i
https://ark.intel.com/products/120473/Intel-Xeon-Gold-5118-Processor-16-5M-Cache-2-30-GHz-
https://ark.intel.com/products/120473/Intel-Xeon-Gold-5118-Processor-16-5M-Cache-2-30-GHz-
https://intel.ly/2t1apTH
https://intel.ly/2t1apTH
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://intel.ly/2ETCWyt
https://doi.org/10.1145/2830772.2830833
https://doi.org/10.1145/2830772.2830833
https://llvm.org/docs/Vectorizers.html
https://llvm.org/docs/Vectorizers.html
https://llvm.org/docs/HowToBuildWithPGO.html
https://clang.llvm.org/docs/UsersManual.html#profile-guided-optimization
https://clang.llvm.org/docs/UsersManual.html#profile-guided-optimization
https://developer.arm.com/technologies/dynamiq
https://developer.arm.com/technologies/dynamiq
https://bit.ly/2H7NWLk
https://bit.ly/2H7NWLk
https://cds.cern.ch/record/178064
https://doi.org/10.1145/2856125
https://doi.org/10.1145/2788396
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://www.nvidia.com/content/PDF/tegra_white_papers/Benefits-of-Multi-core-CPUs-in-Mobile-Devices_Ver1.2.pdf
https://www.nvidia.com/content/PDF/tegra_white_papers/Benefits-of-Multi-core-CPUs-in-Mobile-Devices_Ver1.2.pdf
https://www.nvidia.com/content/PDF/tegra_white_papers/tegra-whitepaper-0911b.pdf
https://www.nvidia.com/content/PDF/tegra_white_papers/tegra-whitepaper-0911b.pdf

Cross-ISA Execution of SIMD Regions for Improved Performance SYSTOR ’19, June 3–5, 2019, Haifa, Israel

[68] Pierre Olivier, Sang-Hoon Kim, and Binoy Ravindran. 2017. OS Sup-
port for Thread Migration and Distribution in the Fully Heteroge-
neous Datacenter. In Proceedings of the 16th Workshop on Hot Topics
in Operating Systems (HotOS ’17). ACM, New York, NY, USA, 174–179.
https://doi.org/10.1145/3102980.3103009

[69] OpenCV. 2018. OpenCV: Introduction. Technical Report. https://docs.
opencv.org/3.3.1/d1/dfb/intro.html.

[70] Edson Luiz Padoin, Laércio Lima Pilla, Márcio Castro, Francieli Z
Boito, Philippe Olivier Alexandre Navaux, and Jean-François Méhaut.
2014. Performance/energy trade-off in scientific computing: the case
of ARM big. LITTLE and Intel Sandy Bridge. IET Computers & Digital
Techniques 9, 1 (2014), 27–35.

[71] Alex Pajuelo, Antonio González, and Mateo Valero. 2002. Speculative
dynamic vectorization. In ACM SIGARCH Computer Architecture News,
Vol. 30. IEEE Computer Society, 271–280.

[72] Szilárd Páll and Berk Hess. 2013. A flexible algorithm for calculating
pair interactions on SIMD architectures. Computer Physics Communi-
cations 184, 12 (2013), 2641–2650.

[73] S. Panneerselvam and M. Swift. 2016. Rinnegan: Efficient resource
use in heterogeneous architectures. In 2016 International Conference
on Parallel Architecture and Compilation Techniques (PACT). 373–386.
https://doi.org/10.1145/2967938.2967964

[74] Vinicius Petrucci, Orlando Loques, and Daniel Mossé. 2012. Lucky
Scheduling for Energy-Efficient Heterogeneous Multi-Core Systems..
In HotPower.

[75] Ioannis Pitas (Ed.). 1993. Parallel Algorithms: For Digital Image Process-
ing, Computer Vision and Neural Networks. John Wiley & Sons, Inc.,
New York, NY, USA.

[76] Andreas Prodromou, Ashish Venkat, and Dean M Tullsen. 2019. Deci-
phering Predictive Schedulers for Heterogeneous-ISA Multicore Ar-
chitectures. (2019).

[77] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis.
2007. Evaluating MapReduce for Multi-core and Multiprocessor Sys-
tems. In 2007 IEEE 13th International Symposium on High Performance
Computer Architecture. 13–24. https://doi.org/10.1109/HPCA.2007.
346181

[78] Greg Sadowski. 2014. Design challenges facing CPU-GPU-Accelerator
integrated heterogeneous systems. In Design Automation Conference
(DAC’14).

[79] David Schor. 2018. Intel Reveals 10nm Sunny Cove Core, a New Core
Roadmap, and Teases Ice Lake Chips. https://bit.ly/2NLEbTg

[80] J. M. Shalf and R. Leland. 2015. Computing beyond Moore’s Law.
Computer 48, 12 (Dec 2015), 14–23. https://doi.org/10.1109/MC.2015.
374

[81] Michael B Taylor. 2013. A landscape of the new dark silicon design
regime. IEEE Micro 33, 5 (2013), 8–19.

[82] Marvell Technology. 2013. ThunderX ARM-based Processors. https:
//www.marvell.com/server-processors/thunderx-arm-processors/.

[83] Marvell Technology. 2018. ThunderX2 ARM-based Processors. https:
//www.marvell.com/server-processors/thunderx2-arm-processors/.

[84] Ashish Venkat, H. Basavaraj, and D. M. Tullsen. 2019. Composite-ISA
Cores: Enabling Multi-ISA Heterogeneity Using a Single ISA. HPCA.

[85] Ashish Venkat and Dean M. Tullsen. 2014. Harnessing ISA Diversity:
Design of a heterogeneous-ISA Chip Multiprocessor. In Proceeding of
the 41st Annual International Symposium on Computer Architecuture
(ISCA ’14). IEEE Press, Piscataway, NJ, USA, 121–132. http://dl.acm.
org/citation.cfm?id=2665671.2665692

[86] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Gar-
cia, Vladyslav Bryksin, Jose Lugo-Martinez, Steven Swanson, and
Michael Bedford Taylor. 2010. Conservation Cores: Reducing the
Energy of Mature Computations. In Proceedings of the Fifteenth Edition
of ASPLOS on Architectural Support for Programming Languages and

Operating Systems (ASPLOS XV). ACM, New York, NY, USA, 205–218.
https://doi.org/10.1145/1736020.1736044

[87] David G. von Bank, Charles M. Shub, and Robert W. Sebesta. 1994. A
Unified Model of Pointwise Equivalence of Procedural Computations.
ACM Trans. Program. Lang. Syst. 16, 6 (Nov. 1994), 1842–1874. https:
//doi.org/10.1145/197320.197402

[88] R. S. Williams. 2017. What’s Next? [The end of Moore’s law]. Com-
puting in Science Engineering 19, 2 (Mar 2017), 7–13. https://doi.org/
10.1109/MCSE.2017.31

[89] Michael Witbrock and Marco Zagha. 1990. An implementation of back-
propagation learning on GF11, a large SIMD parallel computer. Parallel
Comput. 14, 3 (1990), 329 – 346. https://doi.org/10.1016/0167-8191(90)
90085-N

[90] Demin Xiong and Duane FMarble. 1996. Strategies for real-time spatial
analysis using massively parallel SIMD computers: an application
to urban traffic flow analysis. International Journal of Geographical
Information Systems 10, 6 (1996), 769–789.

[91] Yuhao Zhu and Vijay Janapa Reddi. 2013. High-performance and
energy-efficient mobile web browsing on big/little systems. In High
Performance Computer Architecture (HPCA2013), 2013 IEEE 19th Inter-
national Symposium on. IEEE, 13–24.

https://doi.org/10.1145/3102980.3103009
https://docs.opencv.org/3.3.1/d1/dfb/intro.html
https://docs.opencv.org/3.3.1/d1/dfb/intro.html
https://doi.org/10.1145/2967938.2967964
https://doi.org/10.1109/HPCA.2007.346181
https://doi.org/10.1109/HPCA.2007.346181
https://bit.ly/2NLEbTg
https://doi.org/10.1109/MC.2015.374
https://doi.org/10.1109/MC.2015.374
https://www.marvell.com/server-processors/thunderx-arm-processors/
https://www.marvell.com/server-processors/thunderx-arm-processors/
https://www.marvell.com/server-processors/thunderx2-arm-processors/
https://www.marvell.com/server-processors/thunderx2-arm-processors/
http://dl.acm.org/citation.cfm?id=2665671.2665692
http://dl.acm.org/citation.cfm?id=2665671.2665692
https://doi.org/10.1145/1736020.1736044
https://doi.org/10.1145/197320.197402
https://doi.org/10.1145/197320.197402
https://doi.org/10.1109/MCSE.2017.31
https://doi.org/10.1109/MCSE.2017.31
https://doi.org/10.1016/0167-8191(90)90085-N
https://doi.org/10.1016/0167-8191(90)90085-N

	Abstract
	1 Introduction
	2 Background
	2.1 SIMD Instructions
	2.2 Cross-ISA Execution Migration Infrastructure

	3 Cross-ISA SIMD Migration Framework
	3.1 Definitions
	3.2 Basic SIMD Region Migration
	3.3 Vector Unrolling
	3.4 SIMD Region Optimization
	3.5 SIMD-aware Scheduling

	4 Experimental Setup
	5 Experimental Results
	5.1 Two-application Workload
	5.2 Multi-application Workloads

	6 Related Work
	7 Discussion and Future Directions
	8 Conclusion
	References

